Learning Cellular Automata for Function Optimization Problems

نویسندگان

  • Fei Qian
  • Yue Zhao
  • Hironori Hirata
چکیده

We present a model of learning cellular automata (LCA) as an emergent system having some collective behaviors. LCA is an extended version of the traditional cellular automaton. Especially, we adopt the LCA with some self-improving functions, called self-improving learning cellular automata (SILCA) and develop its optimization capability. Each self-improving learning cellular automaton, i.e. a member of SILCA, consists of two parts: main body and a universal constructor. Through the use of a constructing arm, a learning cellular automaton is capable of constructing any configuration whose description can be stored on its input tape. As an example of combinatorial optimization problems, we consider function optimization problems and show the SILCA’s emergent capability for optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Frog Leaping Algorithm Using Cellular Learning Automata

In this paper, a new algorithm which is the result of the combination of cellular learning automata and frog leap algorithm (SFLA) is proposed for optimization in continuous, static environments.At the proposed algorithm, each memeplex of frogs is placed in a cell of cellular learning automata. Learning automata in each cell acts as the brain of memeplex, and will determine the strategy of moti...

متن کامل

A Cellular Learning Automata (CLA) Approach to Job Shop Scheduling Problem

Job shop scheduling problem (JSSP), as one of the NP-Hard combinatorial optimization problems, has attracted the attention of many researchers during the last four decades. The overall purpose regarding this problem is to minimize maximum completion time of jobs, known as makespan. This paper addresses an approach to evolving Cellular Learning Automata (CLA) in order to enable it to solve the J...

متن کامل

Robot Path Planning Using Cellular Automata and Genetic Algorithm

In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...

متن کامل

BI-OBJECTIVE OPTIMIZATION OF RESERVOIR OPERATION BY MULTI-STEP PARALLEL CELLULAR AUTOMATA

Parallel Cellular Automata (PCA) previously has been employed for optimizing bi-objective reservoir operation, where one release is used to meet both objectives. However, if a single release can only be used for one objective, meaning two separate sets of releases are needed, the method is not applicable anymore. In this paper, Multi-Step Parallel Cellular Automata (MSPCA) has been developed fo...

متن کامل

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000